17#if defined(__cplusplus)
345#if defined(__cplusplus)
double a_float
compiler built-in floating-point number type
Definition a.h:1003
a_float a_linalg_plu_det(a_float const *A, a_uint n, int sign)
compute the determinant of a matrix using its LU decomposition.
void a_linalg_T2(a_float *__restrict T, a_float const *__restrict A, a_uint m, a_uint n)
transpose a given m x n matrix A into an n x m matrix T.
void a_linalg_plu_get_U(a_float const *A, a_uint n, a_float *U)
extract the upper triangular matrix U from matrix A.
void a_linalg_cho_get_L(a_float const *A, a_uint n, a_float *L)
extract the lower triangular matrix L from matrix A.
int a_linalg_cho(a_float *A, a_uint n)
compute Cholesky decomposition of a symmetric positive-definite matrix.
void a_linalg_mulmm(a_float *__restrict Z, a_float const *__restrict X, a_float const *__restrict Y, a_uint row, a_uint c_r, a_uint col)
multiply two matrices X and Y, storing the result in Z.
void a_linalg_plu_upper(a_float const *U, a_uint n, a_float *x)
solve the upper triangular system Ux = y for x.
int a_linalg_plu_sgndet(a_float const *A, a_uint n, int sign)
compute the sign of the determinant of a matrix using its LU decomposition.
void a_linalg_plu_get_P(a_uint const *p, a_uint n, a_float *P)
construct the permutation matrix P from a permutation vector p.
void a_linalg_cho_upper(a_float const *L, a_uint n, a_float *x)
solve the upper triangular system L^T x = y for x.
void a_linalg_plu_inv(a_float const *A, a_uint n, a_uint const *p, a_float *b, a_float *I)
compute the inverse of a matrix using its LU decomposition and permutation matrix.
void a_linalg_plu_apply(a_uint const *p, a_uint n, a_float const *b, a_float *Pb)
apply the permutation P to the vector b, producing Pb.
a_float a_linalg_plu_lndet(a_float const *A, a_uint n)
compute the natural logarithm of the absolute value of the determinant of a matrix using its LU decom...
void a_linalg_mulTT(a_float *__restrict Z, a_float const *__restrict X, a_float const *__restrict Y, a_uint row, a_uint c_r, a_uint col)
multiply the transpose of matrix X with the transpose of matrix Y, storing the result in Z.
void a_linalg_plu_solve(a_float const *A, a_uint n, a_uint const *p, a_float const *b, a_float *x)
solve the linear system Ax = b using LU decomposition with partial pivoting.
void a_linalg_mulTm(a_float *__restrict Z, a_float const *__restrict X, a_float const *__restrict Y, a_uint c_r, a_uint row, a_uint col)
multiply the transpose of matrix X with matrix Y, storing the result in Z.
void a_linalg_cho_inv(a_float const *A, a_uint n, a_float *b, a_float *I)
compute the inverse of a matrix using its Cholesky factorization A = LL^T.
a_float a_linalg_dot(a_float const *X, a_float const *Y, a_size n)
compute the dot product of two vectors.
void a_linalg_plu_get_L(a_float const *A, a_uint n, a_float *L)
extract the lower triangular matrix L from matrix A.
void a_linalg_plu_lower(a_float const *L, a_uint n, a_float *y)
solve the lower triangular system Ly = Pb for y.
int a_linalg_plu(a_float *A, a_uint n, a_uint *p, int *sign)
compute LU decomposition of a square matrix with partial pivoting.
void a_linalg_T1(a_float *A, a_uint n)
transpose an n x n square matrix in-place.
void a_linalg_cho_solve(a_float const *A, a_uint n, a_float *x)
solve the linear system Ax = b using the Cholesky factorization A = LL^T.
void a_linalg_mulmT(a_float *__restrict Z, a_float const *__restrict X, a_float const *__restrict Y, a_uint row, a_uint col, a_uint c_r)
multiply matrix X with the transpose of matrix Y, storing the result in Z.
void a_linalg_cho_lower(a_float const *L, a_uint n, a_float *y)
solve the lower triangular system Ly = b for y.
unsigned int a_uint
unsigned integer type is guaranteed to be at least 16 bits
Definition a.h:337
size_t a_size
unsigned integer type returned by the sizeof operator
Definition a.h:823