liba 0.1.15
An algorithm library based on C/C++
Loading...
Searching...
No Matches
hepta polynomial trajectory
Collaboration diagram for hepta polynomial trajectory:

Data Structures

struct  a_trajpoly7
 instance structure for hepta polynomial trajectory More...
 

Macros

#define A_TRAJPOLY7   4
 

Typedefs

typedef struct a_trajpoly7 a_trajpoly7
 

Functions

void a_trajpoly7_gen (a_trajpoly7 *ctx, double ts, double p0, double p1, double v0, double v1, double a0, double a1, double j0, double j1)
 generate for hepta polynomial trajectory
 
void a_trajpoly7_gen0 (a_trajpoly7 *ctx, double ts, double p0, double p1, double v0, double v1, double a0, double a1, double j0, double j1)
 
void a_trajpoly7_gen1 (a_trajpoly7 *ctx)
 
void a_trajpoly7_gen2 (a_trajpoly7 *ctx)
 
void a_trajpoly7_gen3 (a_trajpoly7 *ctx)
 
double a_trajpoly7_pos (a_trajpoly7 const *ctx, double x)
 calculate position for hepta polynomial trajectory
 
double a_trajpoly7_vel (a_trajpoly7 const *ctx, double x)
 calculate velocity for hepta polynomial trajectory
 
double a_trajpoly7_acc (a_trajpoly7 const *ctx, double x)
 calculate acceleration for hepta polynomial trajectory
 
double a_trajpoly7_jer (a_trajpoly7 const *ctx, double x)
 calculate jerk for hepta polynomial trajectory
 

Detailed Description

Function Documentation

◆ a_trajpoly7_acc()

double a_trajpoly7_acc ( a_trajpoly7 const * ctx,
double x )

calculate acceleration for hepta polynomial trajectory

\begin{aligned} \begin{array}{l} \ddot{p}(t)=2 c_{2}+6 c_{3}\left(t-t_{0}\right)+12 c_{4}\left(t-t_{0}\right)^{2}+20 c_{5}\left(t-t_{0}\right)^{3}+30 c_{6}\left(t-t_{0}\right)^{4}+42 c_{7}\left(t-t_{0}\right)^{5}\\ \end{array} \end{aligned}

Parameters
[in]ctxpoints to an instance of hepta polynomial trajectory
[in]xdifference between current time and initial time
Returns
acceleration output

◆ a_trajpoly7_gen()

void a_trajpoly7_gen ( a_trajpoly7 * ctx,
double ts,
double p0,
double p1,
double v0,
double v1,
double a0,
double a1,
double j0,
double j1 )

generate for hepta polynomial trajectory

\begin{aligned} \left\{\begin{array}{l} t=t_{1}-t_{0}\\ p=p_{1}-p_{0}\\ c_{0}=p_{0}\\ c_{1}=v_{0}\\ c_{2}=\cfrac{a_{0}}{2}\\ c_{3}=\cfrac{j_{0}}{6}\\ c_{4}=\cfrac{\left(-4\,j_{0}-j_{1}\right)\,t^3+\left(15\,a_{1}-30\,a_{0}\right)\,t^2+\left(-120\,v_{0}-90\,v_{1}\right)\,t+210\,p}{6\,t^4}\\ c_{5}=\cfrac{\left(2\,j_{0}+j_{1}\right)\,t^3+\left(20\,a_{0}-14\,a_{1}\right)\,t^2+\left(90\,v_{0}+78\,v_{1}\right)\,t-168\,p}{2\,t^5}\\ c_{6}=\cfrac{\left(-4\,j_{0}-3\,j_{1}\right)\,t^3+\left(39\,a_{1}-45\,a_{0}\right)\,t^2+\left(-216\,v_{0}-204\,v_{1}\right)\,t+420\,p}{6\,t^6}\\ c_{7}=\cfrac{\left(j_{0}+j_{1}\right)\,t^3+\left(12\,a_{0}-12\,a_{1}\right)\,t^2+\left(60\,v_{0}+60\,v_{1}\right)\,t-120\,p}{6\,t^7} \end{array}\right. \end{aligned}

Parameters
[in,out]ctxpoints to an instance of hepta polynomial trajectory
[in]tsdifference between final time and initial time
[in]p0initial position
[in]p1final position
[in]v0initial velocity
[in]v1final velocity
[in]a0initial acceleration
[in]a1final acceleration
[in]j0initial jerk
[in]j1final jerk

◆ a_trajpoly7_jer()

double a_trajpoly7_jer ( a_trajpoly7 const * ctx,
double x )

calculate jerk for hepta polynomial trajectory

\begin{aligned} \begin{array}{l} p^{(3)}(t)=6 c_{3}+24 c_{4}\left(t-t_{0}\right)+60 c_{5}\left(t-t_{0}\right)^{2}+120 c_{6}\left(t-t_{0}\right)^{3}+210 c_{7}\left(t-t_{0}\right)^{4} \end{array} \end{aligned}

Parameters
[in]ctxpoints to an instance of hepta polynomial trajectory
[in]xdifference between current time and initial time
Returns
jerk output

◆ a_trajpoly7_pos()

double a_trajpoly7_pos ( a_trajpoly7 const * ctx,
double x )

calculate position for hepta polynomial trajectory

\begin{aligned} \begin{array}{l} p(t)=c_{0}+c_{1}\left(t-t_{0}\right)+c_{2}\left(t-t_{0}\right)^{2}+c_{3}\left(t-t_{0}\right)^{3}+c_{4}\left(t-t_{0}\right)^{4}+c_{5}\left(t-t_{0}\right)^{5}+c_{6}\left(t-t_{0}\right)^{6}+c_{7}\left(t-t_{0}\right)^{7}\\ \end{array} \end{aligned}

Parameters
[in]ctxpoints to an instance of hepta polynomial trajectory
[in]xdifference between current time and initial time
Returns
position output

◆ a_trajpoly7_vel()

double a_trajpoly7_vel ( a_trajpoly7 const * ctx,
double x )

calculate velocity for hepta polynomial trajectory

\begin{aligned} \begin{array}{l} \dot{p}(t)=c_{1}+2 c_{2}\left(t-t_{0}\right)+3 c_{3}\left(t-t_{0}\right)^{2}+4 c_{4}\left(t-t_{0}\right)^{3}+5 c_{5}\left(t-t_{0}\right)^{4}+6 c_{6}\left(t-t_{0}\right)^{5}+7 c_{7}\left(t-t_{0}\right)^{6}\\ \end{array} \end{aligned}

Parameters
[in]ctxpoints to an instance of hepta polynomial trajectory
[in]xdifference between current time and initial time
Returns
velocity output