|
liba 0.1.15
An algorithm library based on C/C++
|
Enumerations | |
| enum | { A_MF_NUL , A_MF_GAUSS , A_MF_GAUSS2 , A_MF_GBELL , A_MF_SIG , A_MF_DSIG , A_MF_PSIG , A_MF_TRAP , A_MF_TRI , A_MF_LINS , A_MF_LINZ , A_MF_S , A_MF_Z , A_MF_PI } |
| enumeration for membership function More... | |
Functions | |
| a_real | a_mf_gauss (a_real x, a_real sigma, a_real c) |
| gaussian membership function | |
| a_real | a_mf_gauss2 (a_real x, a_real sigma1, a_real c1, a_real sigma2, a_real c2) |
| gaussian combination membership function | |
| a_real | a_mf_gbell (a_real x, a_real a, a_real b, a_real c) |
| generalized bell-shaped membership function | |
| a_real | a_mf_sig (a_real x, a_real a, a_real c) |
| sigmoidal membership function | |
| a_real | a_mf_dsig (a_real x, a_real a1, a_real c1, a_real a2, a_real c2) |
| difference between two sigmoidal membership functions | |
| a_real | a_mf_psig (a_real x, a_real a1, a_real c1, a_real a2, a_real c2) |
| product of two sigmoidal membership functions | |
| a_real | a_mf_trap (a_real x, a_real a, a_real b, a_real c, a_real d) |
| trapezoidal membership function | |
| a_real | a_mf_tri (a_real x, a_real a, a_real b, a_real c) |
| triangular membership function | |
| a_real | a_mf_lins (a_real x, a_real a, a_real b) |
| linear s-shaped saturation membership function | |
| a_real | a_mf_linz (a_real x, a_real a, a_real b) |
| linear z-shaped saturation membership function | |
| a_real | a_mf_s (a_real x, a_real a, a_real b) |
| s-shaped membership function | |
| a_real | a_mf_z (a_real x, a_real a, a_real b) |
| z-shaped membership function | |
| a_real | a_mf_pi (a_real x, a_real a, a_real b, a_real c, a_real d) |
| pi-shaped membership function | |
| a_real | a_mf (unsigned int e, a_real x, a_real const *a) |
| membership function | |
| anonymous enum |
enumeration for membership function
membership function
| [in] | e | enumeration for membership function
| ||||||||||||||||||||||||||||
| [in] | x | input value for which to compute membership value. | ||||||||||||||||||||||||||||
| [in] | a | is an array that stores parameters. |
difference between two sigmoidal membership functions
\[ f(x,a_1,c_1,a_2,c_2)=\frac{1}{1+e^{-a_1(x-c_1)}}-\frac{1}{1+e^{-a_2(x-c_2)}} \]
| [in] | x | input value for which to compute membership value. |
| [in] | a1 | defines the width of the first transition area. |
| [in] | c1 | defines the center of the first transition area. |
| [in] | a2 | defines the width of the second transition area. |
| [in] | c2 | defines the center of the second transition area. |
gaussian membership function
\[ f(x,\sigma,c)=e^{-\frac{(x-c)^2}{2\sigma^2}} \]
| [in] | x | input value for which to compute membership value. |
| [in] | sigma | is the standard deviation. |
| [in] | c | is the mean. |
gaussian combination membership function
\[ f(x,\sigma_1,c_1,\sigma_2,c_2)=\begin{cases} e^{-\frac{(x-c_1)^2}{2\sigma_1^2}} & x \lt c_1 \\ 1 & c_1 \le x \le c_2 \\ e^{-\frac{(x-c_2)^2}{2\sigma_2^2}} & x \gt c_2 \\ \end{cases} \]
| [in] | x | input value for which to compute membership value. |
| [in] | sigma1 | is the standard deviation of the left gaussian function. |
| [in] | c1 | is the mean of the left gaussian function. |
| [in] | sigma2 | is the standard deviation of the right gaussian function. |
| [in] | c2 | is the mean of the right gaussian function. |
generalized bell-shaped membership function
\[ f(x,a,b,c)=\frac{1}{1+\left|\frac{x-c}{a}\right|^{2b}} \]
| [in] | x | input value for which to compute membership value. |
| [in] | a | defines the width of the membership function, where a larger value creates a wider membership function. |
| [in] | b | defines the shape of the curve on either side of the central plateau, where a larger value creates a more steep transition. |
| [in] | c | defines the center of the membership function. |
linear s-shaped saturation membership function
\[ f(x,a,b)=\begin{cases} 0 & x \lt a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x \gt b \\ \end{cases} \]
| [in] | x | input value for which to compute membership value. |
| [in] | a | defines its foot. |
| [in] | b | defines its shoulder. |
linear z-shaped saturation membership function
\[ f(x,a,b)=\begin{cases} 1 & x \lt a \\ \frac{b-x}{b-a} & a \le x \le b \\ 0 & x \gt b \\ \end{cases} \]
| [in] | x | input value for which to compute membership value. |
| [in] | a | defines its shoulder. |
| [in] | b | defines its foot. |
pi-shaped membership function
\[ f(x,a,b,c,d)=\begin{cases} 0 & x \le a \\ 2(\frac{x-a}{b-a})^2 & a \le x \le \frac{a+b}{2} \\ 1-2(\frac{b-x}{b-a})^2 & \frac{a+b}{2} \le x \le b \\ 1 & b \le x \le c \\ 1-2(\frac{x-c}{d-c})^2 & c \le x \le \frac{c+d}{2} \\ 2(\frac{d-x}{d-c})^2 & \frac{c+d}{2} \le x \le d \\ 1 & x \ge d \\ \end{cases} \]
| [in] | x | input value for which to compute membership value. |
| [in] | a | defines its left foot. |
| [in] | b | defines its left shoulder. |
| [in] | c | defines its right shoulder. |
| [in] | d | defines its right foot. |
product of two sigmoidal membership functions
\[ f(x,a_1,c_1,a_2,c_2)=\frac{1}{1+e^{-a_1(x-c_1)}}\times\frac{1}{1+e^{-a_2(x-c_2)}} \]
| [in] | x | input value for which to compute membership value. |
| [in] | a1 | defines the width of the first transition area. |
| [in] | c1 | defines the center of the first transition area. |
| [in] | a2 | defines the width of the second transition area. |
| [in] | c2 | defines the center of the second transition area. |
s-shaped membership function
\[ f(x,a,b)=\begin{cases} 0 & x \le a \\ 2(\frac{x-a}{b-a})^2 & a \le x \le \frac{a+b}{2} \\ 1-2(\frac{b-x}{b-a})^2 & \frac{a+b}{2} \le x \le b \\ 1 & x \ge b \\ \end{cases} \]
| [in] | x | input value for which to compute membership value. |
| [in] | a | defines its foot. |
| [in] | b | defines its shoulder. |
sigmoidal membership function
\[ f(x,a,c)=\frac{1}{1+e^{-a(x-c)}} \]
| [in] | x | input value for which to compute membership value. |
| [in] | a | defines the width of the transition area. |
| [in] | c | defines the center of the transition area. |
trapezoidal membership function
\[ f(x,a,b,c,d)=\begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & b \le x \le c \\ \frac{d-x}{d-c} & c \le x \le d \\ 0 & x \ge d \\ \end{cases} \]
| [in] | x | input value for which to compute membership value. |
| [in] | a | defines its left foot. |
| [in] | b | defines its left shoulder. |
| [in] | c | defines its right shoulder. |
| [in] | d | defines its right foot. |
triangular membership function
\[ f(x,a,b)=\begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a \le x \le b \\ \frac{c-x}{c-b} & b \le x \le c \\ 0 & x \ge c \\ \end{cases} \]
| [in] | x | input value for which to compute membership value. |
| [in] | a | defines its left foot. |
| [in] | b | defines its peak. |
| [in] | c | defines its right foot. |
z-shaped membership function
\[ f(x,a,b)=\begin{cases} 1 & x \le a \\ 1-2(\frac{x-a}{b-a})^2 & a \le x \le \frac{a+b}{2} \\ 2(\frac{b-x}{b-a})^2 & \frac{a+b}{2} \le x \le b \\ 0 & x \ge b \\ \end{cases} \]
| [in] | x | input value for which to compute membership value. |
| [in] | a | defines its shoulder. |
| [in] | b | defines its foot. |