liba 0.1.15
An algorithm library based on C/C++
|
Data Structures | |
struct | a_trajpoly5 |
instance structure for quintic polynomial trajectory More... | |
Macros | |
#define | A_TRAJPOLY5 3 |
Typedefs | |
typedef struct a_trajpoly5 | a_trajpoly5 |
Functions | |
void | a_trajpoly5_gen (a_trajpoly5 *ctx, double ts, double p0, double p1, double v0, double v1, double a0, double a1) |
generate for quintic polynomial trajectory | |
void | a_trajpoly5_gen0 (a_trajpoly5 *ctx, double ts, double p0, double p1, double v0, double v1, double a0, double a1) |
void | a_trajpoly5_gen1 (a_trajpoly5 *ctx) |
void | a_trajpoly5_gen2 (a_trajpoly5 *ctx) |
double | a_trajpoly5_pos (a_trajpoly5 const *ctx, double x) |
calculate position for quintic polynomial trajectory | |
double | a_trajpoly5_vel (a_trajpoly5 const *ctx, double x) |
calculate velocity for quintic polynomial trajectory | |
double | a_trajpoly5_acc (a_trajpoly5 const *ctx, double x) |
calculate acceleration for quintic polynomial trajectory | |
double a_trajpoly5_acc | ( | a_trajpoly5 const * | ctx, |
double | x ) |
calculate acceleration for quintic polynomial trajectory
\begin{aligned} \begin{array}{l} \ddot{p}(t)=2 c_{2}+6 c_{3}\left(t-t_{0}\right)+12 c_{4}\left(t-t_{0}\right)^{2}+20 c_{5}\left(t-t_{0}\right)^{3} \end{array} \end{aligned}
[in] | ctx | points to an instance of quintic polynomial trajectory |
[in] | x | difference between current time and initial time |
void a_trajpoly5_gen | ( | a_trajpoly5 * | ctx, |
double | ts, | ||
double | p0, | ||
double | p1, | ||
double | v0, | ||
double | v1, | ||
double | a0, | ||
double | a1 ) |
generate for quintic polynomial trajectory
\begin{aligned} \left\{\begin{array}{l} t=t_{1}-t_{0}\\ p=p_{1}-p_{0}\\ c_{0}=p_{0}\\ c_{1}=v_{0}\\ c_{2}=\cfrac{a_{0}}{2}\\ c_{3}=\cfrac{\left(a_{1}-3\,a_{0}\right)\,t^2+\left(-12\,v_{0}-8\,v_{1}\right)\,t+20\,p}{2\,t^3}\\ c_{4}=\cfrac{\left(3\,a_{0}-2\,a_{1}\right)\,t^2+\left(16\,v_{0}+14\,v_{1}\right)\,t-30\,p}{2\,t^4}\\ c_{5}=\cfrac{\left(a_{1}-a_{0}\right)\,t^2+\left(-6\,v_{0}-6\,v_{1}\right)\,t+12\,p}{2\,t^5} \end{array}\right. \end{aligned}
[in,out] | ctx | points to an instance of quintic polynomial trajectory |
[in] | ts | difference between final time and initial time |
[in] | p0 | initial position |
[in] | p1 | final position |
[in] | v0 | initial velocity |
[in] | v1 | final velocity |
[in] | a0 | initial acceleration |
[in] | a1 | final acceleration |
double a_trajpoly5_pos | ( | a_trajpoly5 const * | ctx, |
double | x ) |
calculate position for quintic polynomial trajectory
\begin{aligned} \begin{array}{l} p(t)=c_{0}+c_{1}\left(t-t_{0}\right)+c_{2}\left(t-t_{0}\right)^{2}+c_{3}\left(t-t_{0}\right)^{3}+c_{4}\left(t-t_{0}\right)^{4}+c_{5}\left(t-t_{0}\right)^{5}\\ \end{array} \end{aligned}
[in] | ctx | points to an instance of quintic polynomial trajectory |
[in] | x | difference between current time and initial time |
double a_trajpoly5_vel | ( | a_trajpoly5 const * | ctx, |
double | x ) |
calculate velocity for quintic polynomial trajectory
\begin{aligned} \begin{array}{l} \dot{p}(t)=c_{1}+2 c_{2}\left(t-t_{0}\right)+3 c_{3}\left(t-t_{0}\right)^{2}+4 c_{4}\left(t-t_{0}\right)^{3}+5 c_{5}\left(t-t_{0}\right)^{4}\\ \end{array} \end{aligned}
[in] | ctx | points to an instance of quintic polynomial trajectory |
[in] | x | difference between current time and initial time |