liba 0.1.15
An algorithm library based on C/C++
Loading...
Searching...
No Matches
fuzzy operator
Collaboration diagram for fuzzy operator:

Functions

double a_fuzzy_not (double x)
 complementary operator
 
double a_fuzzy_cap (double a, double b)
 fuzzy intersection operator
 
double a_fuzzy_cap_algebra (double a, double b)
 algebraic product operator
 
double a_fuzzy_cap_bounded (double a, double b)
 bounded product operator
 
double a_fuzzy_cup (double a, double b)
 fuzzy union operator
 
double a_fuzzy_cup_algebra (double a, double b)
 algebraic sum operator
 
double a_fuzzy_cup_bounded (double a, double b)
 bounded sum operator
 
double a_fuzzy_equ (double a, double b)
 equilibrium operator
 
double a_fuzzy_equ_ (double gamma, double a, double b)
 equilibrium operator
 

Detailed Description

Function Documentation

◆ a_fuzzy_cap()

double a_fuzzy_cap ( double a,
double b )

fuzzy intersection operator

Parameters
[in]aleft-hand operand
[in]bright-hand operand
Returns
= \( \min(a,b) \)

◆ a_fuzzy_cap_algebra()

double a_fuzzy_cap_algebra ( double a,
double b )

algebraic product operator

Parameters
[in]aleft-hand operand
[in]bright-hand operand
Returns
= \( ab \)

◆ a_fuzzy_cap_bounded()

double a_fuzzy_cap_bounded ( double a,
double b )

bounded product operator

Parameters
[in]aleft-hand operand
[in]bright-hand operand
Returns
= \( \max(a+b-1,0) \)

◆ a_fuzzy_cup()

double a_fuzzy_cup ( double a,
double b )

fuzzy union operator

Parameters
[in]aleft-hand operand
[in]bright-hand operand
Returns
= \( \max(a,b) \)

◆ a_fuzzy_cup_algebra()

double a_fuzzy_cup_algebra ( double a,
double b )

algebraic sum operator

Parameters
[in]aleft-hand operand
[in]bright-hand operand
Returns
= \( a+b-ab \)

◆ a_fuzzy_cup_bounded()

double a_fuzzy_cup_bounded ( double a,
double b )

bounded sum operator

Parameters
[in]aleft-hand operand
[in]bright-hand operand
Returns
= \( \min(a+b,1) \)

◆ a_fuzzy_equ()

double a_fuzzy_equ ( double a,
double b )

equilibrium operator

Parameters
[in]aleft-hand operand
[in]bright-hand operand
Returns
= \( \sqrt{ab}\sqrt{1-(1-a)(1-b)} \)

◆ a_fuzzy_equ_()

double a_fuzzy_equ_ ( double gamma,
double a,
double b )

equilibrium operator

Parameters
[in]gammagamma operator
[in]aleft-hand operand
[in]bright-hand operand
Returns
= \( (ab)^{1-\gamma}(1-(1-a)(1-b))^{\gamma} \)

◆ a_fuzzy_not()

double a_fuzzy_not ( double x)

complementary operator

Parameters
[in]xmembership
Returns
= \( 1-x \)