Class a.regress_linear

linear regression

Tables

a.regress_linear linear regression

Methods

a.regress_linear:die () destructor for linear regression
a.regress_linear:new (coef, bias) constructor for linear regression
a.regress_linear:init (coef, bias) initialize for linear regression
a.regress_linear:eval (val) calculate predicted value for linear regression
a.regress_linear:err (x, y) calculate residuals for linear regression
a.regress_linear:gd (input, error, alpha) gradient descent for linear regression
a.regress_linear:sgd (x, y, alpha) stochastic gradient descent for linear regression
a.regress_linear:bgd (x, y, alpha) batch gradient descent for linear regression
a.regress_linear:mgd (x, y, delta, lrmax, lrmin[, lrtim[, epoch[, batch]]]) mini-batch gradient descent for linear regression
a.regress_linear:zero () zeroing for linear regression


Tables

a.regress_linear
linear regression

Fields:

  • coef regression coefficient
  • bias intercept

Methods

a.regress_linear:die ()
destructor for linear regression
a.regress_linear:new (coef, bias)
constructor for linear regression

Parameters:

  • coef number regression coefficient
  • bias number intercept

Returns:

    a.regress_linear linear regression userdata
a.regress_linear:init (coef, bias)
initialize for linear regression

Parameters:

  • coef number regression coefficient
  • bias number intercept

Returns:

    a.regress_linear linear regression userdata
a.regress_linear:eval (val)
calculate predicted value for linear regression

Parameters:

  • val number independent variable

Returns:

    number predicted value
a.regress_linear:err (x, y)
calculate residuals for linear regression

Parameters:

  • x table predictor data, specified as a numeric matrix
  • y table response data, specified as a numeric vector

Returns:

    table residuals, specified as a numeric vector
a.regress_linear:gd (input, error, alpha)
gradient descent for linear regression

Parameters:

  • input table predictor data, specified as a numeric vector
  • error number residual, specified as a numeric scalar
  • alpha number learning rate for gradient descent

Returns:

    a.regress_linear linear regression userdata
a.regress_linear:sgd (x, y, alpha)
stochastic gradient descent for linear regression

Parameters:

  • x table predictor data, specified as a numeric matrix
  • y table response data, specified as a numeric vector
  • alpha number learning rate for gradient descent

Returns:

    a.regress_linear linear regression userdata
a.regress_linear:bgd (x, y, alpha)
batch gradient descent for linear regression

Parameters:

  • x table predictor data, specified as a numeric matrix
  • y table response data, specified as a numeric vector
  • alpha number learning rate for gradient descent

Returns:

    a.regress_linear linear regression userdata
a.regress_linear:mgd (x, y, delta, lrmax, lrmin[, lrtim[, epoch[, batch]]])
mini-batch gradient descent for linear regression

Parameters:

  • x table predictor data, specified as a numeric matrix
  • y table response data, specified as a numeric vector
  • delta number threshold for gradient descent value
  • lrmax number maximum learning rate of iterations
  • lrmin number minimum learning rate of iterations
  • lrtim integer total number of learning rate steps (optional)
  • epoch integer maximum number of epochs (optional)
  • batch integer batch size of data (optional)

Returns:

    number change in loss function
a.regress_linear:zero ()
zeroing for linear regression

Returns:

    a.regress_linear linear regression userdata
generated by LDoc 1.5.0 Last updated 2025-01-23 16:51:58